3

Superconductivity

A conductor is a material that can transport electric charge. A typical example of a
conductor is a metal, such as copper, iron, or gold. These materials are formed by
a somewhat regular lattice of positively charged ions and a sea of mobile electrons.
Subject to an external force, the valence electrons will accelerate toward the regions
of lowest potential energy, creating an electrical current. As opposing agent to this
acceleration, the electrons experience a friction due to the collisions with ions in
the lattice. A typical electron will move an average distance, called the mean free
electron path, before it hits an ion, exchanges kinetic energy with it, and randomly
changes both the velocity and direction of motion.

What I described in the last paragraph is the usual microscopic model for Ohmic
resistance. At the macroscopic level, it implies that, in order to sustain a current /
flowing through a conductor, we have to continously exert a force on the charge
carriers, establishing a potential energy difference or voltage V between two points
of the conductor. The larger the current we wish to establish, the faster the material
dissipates energy and the larger the voltage V required. The proportionality constant
between current / and voltage V is the device’s resistance R:

V=1IxR. 3.1)

The resistance R is an extensive property that depends on the size of the material
through which charge carriers propagate, as well as the rate of collisions that we
mentioned before, the so-called resistivity p.

From our microscopic interpretation of the resitivity p, it is obvious that there will
be many contributions to this value. Part of the resistivity will be due to intrinsic
sources. These include lattice defects — dislocations, boundaries between grains in
the material, different orientations in the crystal — and impurities or atoms from
different materials that penetrate the conductor. In addition to these, we also have to
consider the influence of temperature. When the metal heats up, the ions move faster
and farther away from their equilibrium positions in the lattice. This increases both
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Table 3.1. Critical temperatures of various superconducting materials.

Element or compound Symbol SC type T, Gap 2A
Aluminum Al Type 1 1.175 K 82.2 GHz
Lead Pb Type I 720K 660 GHz
Mercury Hg Type I 415K 399 GHz
Niobium Nb Type I 92K 738.5 GHz

Yttrium barium copper oxide YBa;Cu, O, High-T, 70-90 K -

the probability of collisions with electrons as well as the amount of energy that they
can exchange. When we combine both effects, we typically find an experimental fit
of the form

p ~ poll +amax{T" —T,0}], (3.2)

with a temperature-dependent contribution and an intrinsic plateau py that depends
on the material and even on the specific sample.

The study of the temperature-dependent resistance in metals experienced a break-
through with the discovery of liquid helium by Kamerlingh Onnes in 1908. One of
the first applications of liquified helium was to study the conductivity of metals
(mercury, tin, and lead) under temperatures ~4.2 K where the thermal contribution
to the resistivity should be negligible. In 1911, Kamerlingh Onnes submerged a
wire of mercury in helium and observed that the resistivity of the metal suddenly
dropped to zero. In other words, the previous plateau disappeared, py >~ 0, even
though nothing special had been done to improve the material’s purity and lattice
perfection. After these initial discoveries, further materials were shown to enter
this new superconducting phase at sufficiently low temperatures, summarized in
Table 3.1.

Later studies have shown that a superconducting material cannot be just charac-
terized as a conductor without resistance. As we will soon see, superconductivity is
an intrinsically quantum effect that has other unexpected consequences:

— The first one is the possibility of establishing persistent currents. If we build
a superconducting ring and induce a current, for instance by passing a magnet
through the loop or using an external inductor, this current can persist forever
without any energy penalty on the material.

— The current that flows around a hole or in a loop can only take certain dis-
crete values that are compatible with the quantization of the magnetic flux
that traverses the loop. This fluxoid quantization happens in units of the flux
quantum ®y = h/2e, a universal magnitude governing the operation of SQUIDs
(Section 4.7) and superconducting qubits (Chapter 6).

https://doi.org/10.1017/9781316779460.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781316779460.003

Superconductivity 21

— Superconductors exhibit another surprising phenomenon known as the Meissner
effect, which is the ability of the superconductor to “expel” magnetic fields. If
we take a superconducting object and switch on a magnetic field, the mate-
rial develops superconducting currents on the surface such that they cancel the
magnetic fields inside the object. This phenomenon is similar to how charges
on the surface of a conductor arrange to cancel all electric fields inside the
bulk and lays at the heart of different levitation experiments with magnets and
superconductors.

— Finally, superconductivity also leads to counterintuitive behavior in super-
conductor—insulator—superconductor interfaces. The quantum nature of the
superconducting charge carriers allows them to tunnel through thin insulating
barriers, establishing currents that behave in unexpected ways in presence of dc
and ac potentials. This Josephson effect makes it possible to develop Josephson
Jjunctions, a nonlinear inductor that makes superconducting circuits useful for
quantum technology applications.

This phenomenology, which is universal across the board of all superconduct-
ing materials, can be explained with a mesoscopic theory that combines quantum
mechanics and electromagnetism. However, not all superconducting materials are
identical: They can be distinguished by other properties, such as the conditions
under which superconductivity appears or is destroyed.

— Type I superconductors is the denomination for the first family of supercon-
ducting materials that were discovered. This includes most elementary metals,
such as mercury, tin, or aluminum. Superconductivity manifests at low critical
temperatures, between 1-4 K, and is destroyed at relatively low critical mag-
netic fields. Above such fields, the Meissner effect abruptly disappears and the
material experiences a first-order phase transition into an ordinary metal.

— Type II superconductors includes niobium and a plethora of alloys with larger
critical temperatures and superconducting gaps. These materials survive stronger
magnetic fields through the creation of magnetic vortices: thin “tubes” of ordi-
nary metal that allow the field to cross the material, while the rest of the electrons
remain in a superconducting state.

— High-Tc superconductors is yet another family of superconducting materials,
discovered late in the twentieth century. These superconductors are rare-earth
ceramic alloys with a complex, quasi-two-dimensional structure that allows
superconductivity at temperatures above nitrogen’s boiling point (70 K). Since
we must work at lower temperatures to engineer microwave quantum circuits
(see Section 4.1.1), and since these ceramic materials are difficult to fabri-
cate, they are not very interesting for superconducting quantum information
technology.
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After this brief overview of superconducting materials, we will introduce both a
microscopic interpretation of superconductivity, as well as a macroscopic theory —
the London theory or macroscopic wavefunction model — that explains much of the
superconducting phenomenology. A distilled version of this model will be the basis
in Chapter 4 to develop an effective theory of superconducting circuits.

3.1 Microscopic Model

Which mechanism allows some metals to become superconductors? This is a
Nobel Prize—winning question that was answered by physicists John Bardeen,
Leon Cooper, and John R. Schrieffer in 1957 (Bardeen et al., 1957a,b). Together,
they explained many of the superconducting phenomena mentioned previously,
as well as other many-body properties of the superconducting materials, which
include the following:

— The evidence of a phase transition and of some type of energy gap to break
superconductivity, as suggested by the existence of a critical temperature 7, and
a critical magnetic field above which superconductivity disappears.

— The exponential decrease of the superconductor’s heat capacity with temperature
C o exp(—1.5T,/T). This property was consistent with a many-body theory in
which there is an energy gap, a minimum excitation energy per particle of order
~1.5kpT,.

— Further evidence of some excitation gap, as provided by the electromagnetic
absorption spectrum: the minimum photon energy required to locally excite or
break the superconducting state lays somewhere around 2 x 1.5 x kgT,.

— Finally, the magnetostatic properties of the superconductor, including supercon-
ducting currents and the Meissner effect could be explained by introducing a
coherence length —1.e., quantum correlations at short distances. As it is now well
known in condensed matter physics, the existence of finite coherence lengths is
usually an indicator of a gapped model.

The answer by Bardeen and collaborators is known as the BCS theory. This theory
proposes that the superconductor is actually a Bose—Einstein condensate of charge
carriers. As it was already known from studies of Bose—Einstein condensation and
early models of “He superfluidity, a weakly interacting Bose—Einstein condensate
can support superfluid currents that never stop and that are immune to small imper-
fections, impurities, and collisions that do not carry too much energy. In order to
justify the existence of Bose—Einstein condensation, the BCS theory introduces
an effective attraction between the metal’s valence electrons with opposite spin.
This attraction is mediated by the phonons of the crystalline structure that forms
the metal. At low temperatures, it gives rise to the BCS instability, in which the
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Fermi theory breaks down, and electrons join into stable bound particles called
Cooper pairs (Cooper, 1956). Because of the spin-statistics connection, the pair
of two bound electrons is a particle with a bosonic statistics, which condense into a
superfluid state.

The BCS theory provides a very elegant and also very straightforward frame-
work for studying the superconductor, with only a few parameters that account for
all the physics. The main parameter is the BCS or superconducting gap, usually
denoted by A(k). The gap is the binding energy of every two electrons that form
a pair. It depends mildly on the electron’s momenta, and the smallest value A(0)
explains many quantiative properties of the superconducting phase and the phase
transtion. For instance, as we increase the temperature, we can expect that processes
in which pairs are broken become relevant, destroying superconductivity. The quan-
titative answer is a bit more complicated, as the gap itself depends on temperature
A(T) =~ 1.74A(0)s/T — T/ T, and the critical temperature 7, >~ A(0)/1.76kp is the
point at which pairing becomes energetically trivial.

The superconducting gap also explains some features in the interaction of the
superconductor with electromagnetic fields. A superconductor can absorb photons
through two different mechanisms. Low-energy microwaves in the range of 1-20
GHz can excite plasmons of the charged superfluid. These processes create quantum
excitations that behave very much like photons (see Chapter 5) or like artificial
atoms (see Chapter 6), and which we can route, confine, and operate using super-
conducting circuits. The second mechanism involves stealing a Cooper pair from
the condensate and breaking it into two separate electrons. The energy required
for this is Aiw >~ 2A(0) >~ 3.52kgT. For the case of the widely used material in
superconducting circuits, aluminum, this energy lays in the range of 100 GHz.
Therefore, we can suppress this type of event by sufficiently cooling our circuits
and isolating them from the environment, with filters that prevent the injection of
highly energetic photons.

The BCS theory has other important consequences, including studies of heat
capacity, impurities, quasiparticle excitations, Andreev states and normal super-
conductor interfaces. Overall, this theory applies very well to type I supercon-
ductors, and to some extent to type II, but it does not explain high-temperature
superconductivity.

Fortunately, we are not so much interested in complex superconducting mate-
rials or sophisticated excitations. Rather, we would like an effective model of
the superfluid condensate in the simple materials, Al or Nb, which are used
in the quantum circuit experiments. As explained by Gor’kov (1959), the BCS
model of superconductivity predicts an effective nonlinear theory for the con-
densate order parameter. This is the Ginzburg—Landau model or, in the simpli-
fied linear version that we introduce here, the macroscopic wavefunction model
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(Orlando, 1991). Without many complications, this intuitive model will provide a
solid and approachable foundation to the engineering of quantum circuit in later
chapters.

3.2 Macroscopic Quantum Model

The BCS model for superconductivity proposes that electrons group into a larger
unit, the Cooper pair, that has the properties of both being a charged particle, with
charge ¢ = —2e, as well as being a boson. The bosonic nature of the particle is what
makes it possible for all Cooper pairs to condense, sharing a common superfluid
state that is insensitive to defects in the material and any other drag force. The
theory that we are about to explain is very similar to other models that have been
put forward and successfully used, for instance, in the study of weakly interact-
ing Bose—FEinstein condensates of alkali atoms (Pitaevskii and Stringari, 2016),
and even BCS superfluids built from fermionic atoms. Our formulation of the the-
ory follows closely Orlando (1991), a book we encourage you to read for a better
understanding of superconducting properties, magnetostatics, and other interesting
phenomenology.

The macroscopic wavefunction theory is based on the assumption that the many-
body state is described by a collective wavefunction that is a product state of the
same wavefunction for each of the N Cooper pairs:

B X2 Xy 1) = §(X1, 05X, 1) - - - E(Xp, 7). (3.3)

This type of macroscopic accumulation of particles into the same quantum state is
what we expect from a Bose—Einstein condensate well below its critical temper-
ature. However, we are also allowing for this accumulation, which is typically a
property of a ground state, to also describe the dynamics of the collective system
in time, as it reacts to external perturbations from electromagnetic fields, currents,
etc. This is a conceptual extension that is only justified by the agreement with
experiments and the exact simulations of small systems.

The macroscopic wavefunction theory leads us to introduce new fields n; and 6,
which respectively describe the charge density and, as we will soon see, the flow of
particles:

V(x,1) = VNEX, 1) =~ /ns(x,1)e ™D, (3.4)

We typically assume a constant and approximately uniform density of carriers
throughout most of the material, n,(x,7) >~ n,. This assumption is approximately
valid in many situations because matter tends toward charge neutrality. It will not
apply when we consider the charge trapped on a capacitor or in a superconducting
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island. Those deviations will be studied as perturbative corrections to the back-
ground of superconducting particles in the macroscopic theory.

Assuming that the macroscopic wavefunction is a viable model, we now postulate
a very general model for its dynamics:

ihd, = [2’; (—ihV — g,A) + ¢;v(x, r)] V. (3.5)

This model is inspired by the Schrodinger equation for a charged particle moving
in an electromagnetic field with scalar and vector potentials v(x,7) and A(X,1?),
respectively. The model introduces two effective parameters m; and g, to describe
the mass and charge of the Cooper pair. As we have seen, the charge is precisely
known:

gs = —2¢ = —2 x 1.60217662 x 107" C. (3.6)

However, m; = 2m], contains the effective mass of the electrons moving through
the solid lattice m;;, which depends on the band structure and has to be determined
experimentally for each material.

3.3 Superfluid Current

From the previous equation, we can already obtain two important properties that
we need for studying real superconducting circuits. The first property is the charge
distribution, which is given by

p(x,1) = g5 [P (x,0)]%. (3.7

This superfluid charge includes a very large background that compensates the
charge of the ions structuring the lattice of the metal or alloy. From the point of
view of circuit theory, it is more interesting to work with the superfluid current,
a vector field J(x,¢) describing the flow of charges. The evolution of the electric
charge Q confined in a volume €2, is related to the supercurrent flowing across the
boundary of that volume 9£2:

d
d—Q = / dpdPx=—[ J-dn (3.8)
! Q a0

Here n is the unit vector normal to the surface 92 at each point of the boundary.
The same physics is described by the continuity equation:

dp=-V-J. (3.9)
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As Fritz London conjectured, the superfluid current may be derived from the
Schrodinger equation (3.5) as a combination of the macroscopic wavefunction cur-
rent and the electromagnetic field:

J=gq xRe{x//*K—iEV—ﬁA) w]} (3.10)

g g

This combination explain the fluxoid quantization and the Meissner effect, as
described by London et al. (1935).

Note that we can obtain the electric current intensity of a circuit I by integrating
the charge current J(x, ¢) across any section S of any cable in the circuit:

1(t) = // J(x,1) - dS. (3.11)
S

The current intensity can be different at different points of a large superconducting
circuit. However, the conservation of charge — Cooper pairs are not destroyed in
our simple, conservative model — implies that the current coming into a supercon-
ducting element must balance with the current going out into other circuit elements.
This will be key in our analysis of circuits and derivation of quantitative models in
Chapter 4.

3.4 Superconducting Phase

The superconducting wavefunction contains information about the charge distribu-
tion and the electrical current. We will now argue that most of the information is
actually hidden in the phase of the wavefunction. We will also relate this phase to a
macroscopically observable quantity, the flux.

The first statement is rather obvious. We have already discussed that the density
of charged particles must be a rather uniform property, dependent only on the prop-
erties of the material —i.e., how many electrons the atoms donate to the conduction
band where Cooper pairs are formed. If we assume that n,(x,¢) = |¥|? is constant
and uniform, currents are divergence-free:

vV.J=0 (3.12)

and all information about the superconductor must actually reside in the phase of
the wavefunction. Indeed, working with (3.10), we obtain

h
J = qun, [—ve - ﬁA] . (3.13)
m m

The second statement is more subtle. Let us assume the Coulomb gauge V - A =0,
and specialize the macroscopic quantum model (3.5) for a wavefunction with
uniform density. The Coulomb gauge implies A6 = 0, and

https://doi.org/10.1017/9781316779460.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781316779460.003

3.5 Gauge-Invariant Phase 27

1
— 13,0 ~ —AJ* + g,v. (3.14)
2n,
Notice the new constant, the isotropic London coefficient! A = m,/q’n.
In the absence of currents, J = 0, (3.14) becomes the so-called phase-voltage
relation

9,6 ~ ‘%”' (3.15)

This relation is an obvious consequence of unitary evolution. For quasi-stationary
states, the wavefunction remains constant up to a global phase, determined by
the energy of the system ¥ (X,t) = exp(—iEt/h){(x,0). Since the energy of the
charged particle in a potential is E = g,v, we obtain 0,0 = —E/h = —q,v/h. The
problem with relation (3.15) is that it is not gauge invariant — it is only valid in the
Coulomb gauge — and it has been derived under the condition of no persistent
currents, J = 0. We have to complete our derivation to regard more general
conditions!

3.5 Gauge-Invariant Phase

In order to correct (3.15), we will separate the superconducting phase into a term that
is always the same, and a contribution that depends on our choice of electromagnetic
gauge. The gauge-invariant phase ¢(X,t) is defined by removing the contribution
of the vector potential, taking as reference one (arbitrary) location of the supercon-
ductor x:

O(x,1) — O(Xo,1) = P(X, 1) — 9(Xo, 1) + % f XA(r,t) ~dl. (3.16)

X0
In the definition of ¢(x, 1), the choice of path from x to x is arbitrary, but (i) it must
be unique for each point x, (ii) it must be continuous, (iii) all paths must remain
in the superconductor, and (iv) they must not cross each other.> Except for a set of
points of zero measure — the discontinuities of ¢ — we can define a gauge-invariant
wavefunction:

Varx, 1) = e T oAy gy = oD iy (e, (3.17)

' As mentioned before, superconducting currents shield magnetic fields out of the material. The London
coefficient is related to the penetration depth of magnetic fields into the superconductor, a fact that can also be
derived from this theory (Orlando, 1991).

2 This choice of path is one of the essential steps in working with any superconducting circuit, as we will see in
Chapter 4. However, in that chapter we will assume quasi-one-dimensional structures, where it is easy to
believe that such paths do exist, at least in the form x; = x/ 4+ xo(1 — /) for/ € [0,1].
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which satisfies a Schrodinger equation without vector potential:

1
ihd Yo = [2m (—ihV)* + qsv(X,t)] Var. (3.18)

N

We now reach a gauge-independent relation between the phase and the
electric field:

0 X 0
— 1) = — —Vv——A]-dl 3.1
at(p(x’ ) A /XO ( v ot ) (3.19)

=% xE(r,t) ~dl= % [V(x0) — V(X)].

X0
This gauge-invariant phase is related to the voltage difference V across the super-
conducting circuit,® defined as the energy required to transport a unit of charge from
Xo to x. [t is convenient to refer the voltage to V(xy) := 0 and work instead with the
electric flux, defined up to an irrelevant offset as

13
d(x, 1) = / V(x,t)dr. (3.20)
0
Introducing also the magnetic flux quantum,
h h ~15
0= o =3 ~ 2.067833758(46) x 1077 Wb, (3.21)
qs e

we identify the gauge-invariant phase with the electric flux

rp(X,1) = %8,(])()(,0, (3.22)

As we will see in Chapter 4, this identity makes the electric flux one of the two
preferred variables when working with superconducting circuits, the other one being
the charge ¢ that accumulates on a superconducting element. Another important
property of the gauge-invariant phase is that it determines the superconducting
current:

h \) s h sty
J=gn [— (w + %‘A) - q—‘A] = sy, (3.23)
m

N m N mS

This makes sense, because the superconducting current, just like the circuit voltage,
cannot depend on the choice of gauge.

3V and v are not the same observable. Only the former is gauge independent.
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3.6 Fluxoid Quantization

There is a third consequence of the phase-current relation. This one relates to the
allowed values of the current and of the magnetic flux trapped inside superconduc-
tors. Let us multiply (3.13) by A = m,/n,q? and integrate it around a closed-loop
C around a simply connected region, C = 95:

h
%(AJ)-dl+%A-dl— —Veo-dl =0. (3.24)
c C c Y9s

We use Stokes’s theorem to transform the second line integral into a surface integral
over the region S. The contour integral of the phase must produce a multiple of
2n x h/q; = — Py, as otherwise the wavefunction ¥ would be discontinuous. This
results in the quantization equation

?g(AJ)-dl+/B-dS+<I>oxm:0, withm € Z. (3.25)
c s
This equation states that the magnetic flux trapped in a loop

Pjoop = / B - dS, (3.26)
S

plus the flux due to the induced supercurrents must be an integer multiple of the
magnetic flux quantum (3.21). This is a very powerful result, used by Deaver and
Fairbank (1961) to estimate &, and demonstrate that the superconducting particles
qs = —2e are formed by two electrons.

There is a simpler derivation of fluxoid quantization that is of more interest to
us, and which is based on the gauge-invariant phase (3.16). This definition can be
reformulated as

V6 = Vg + %A. (3.27)
Integrating around a closed loop, we find

2
f V- dl =27 X 1+ — Diogp. (3.28)
c @y

Using the phase-voltage relation, this can be rewritten as a condition for the
flux differences along different segments of a superconducting circuit, or fluxoid
quantization:

% V¢ -dl = &g x m + qDloop- (3.29)
C
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This condition is one of the constituent relations in the theory of superconducting
circuits from Chapter 4. Note that unlike the wavefunction, the flux and the gauge-
invariant phase need not be continuous, as their definition depends on a choice of
paths that we make before studying the circuit. However, our derivation reveals that
all choices are consistent, and that the existence of loops in a circuit reduces the
number of independent variables, because fluxes are not completely independent
from each other.

3.7 Josephson Junctions

The last topic that we cover in this chapter is a simple, yet very powerful device that
was postulated by Josephson (1962) and verified experimentally shortly thereafter
by Anderson and Rowell (1963). The device in question is called a funnel Josephson
junction.* It is a superconductor—insulator—superconductor “sandwich,” where the
insulating area is so thin that it allows quantum tunneling of Cooper pairs. As
Josephson predicted, the tunneling of pairs creates unexpected relations between
the applied voltage (dc or ac) on the superconducting leads and the intensity that
circulates through the junction. We can use the macroscopic quantum model to
derive those relations.

Figure 3.1b shows the schematics of a Josephson junction, with three separate
regions: two superconducting leads of arbitrary size and an insulating barrier. Our
toy model for the junction is a one-dimensional® potential barrier of height Uy
and width d that hinders the propagation of the macroscopic wavefunction ¥ (x, ).

(@) (b)

x | |

0 0 i -
—/ o/ d+>

Figure 3.1 (a) Circuit schematics for a Josephson junction connected to an inten-
sity source. (b) The Josephson junction is made of two superconducting leads
(white) separated by a thin insulating barrier (gray). (c) We model the junction as a
barrier energy Uy, which is thin enough, d, that it allows some quantum tunneling
of Cooper pairs.

4 We can obtain a similar physics through other physical devices, such as constrictions, point contacts, and
normal interfaces. However, the theoretical picture is simpler in this case.

5 The one-dimensional model is sufficient for describing the type of small junctions that appears in typical
superconducting circuits. A more detailed model that takes into account the transverse dimensions is found in
Orlando (1991).
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We seek stationary solutions of the Schrodinger equation for the gauge-invariant

wavefunction
1 .
Evyi(x) = [2 (—ihd,)* + vo(X)} Var(x), (3.30)
with the potential barrier
0, x| > d/2
vo(x) = {Uo, otherwise. 3.3D)

As a boundary condition, we impose a current intensity / flowing through the junc-
tion. Thanks to the relation between current intensity and superconducting current,
our boundary condition can be written as

I:/J'dS:JxA, (3.32)
s

where the proportionality constant A is the area perpendicular to the junction —i.e.,
the cross-section size.

What do the solutions of the Schrodinger equation look like with these condi-
tions? Since far away from the insulator the current is fixed, we expect plane-wave
solutions such that d,¢ o« J. More precisely, we write

Yai(x) o« /ne’™, x| > d)2. (3.33)

The sign and magnitude of the superconduction current may be derived from
the momentum k of the wavefunction as J = gyn hik/ms. The momentum also k
determines the energy of the solution

R

== ZAzJZ. (3.34)

When the current is very small J =~ 0, this energy will lay well below the barrier
Uy. Inside the insulator, we will have an equation of the form

1
£
which can only be satisfied with exponentially decreasing or increasing solutions,
Yar o exp(£x/&). The final solution then reads

E

mg
e = U= EWar = e, ¥l =d/2 (3.35)

Yai(x) = ay cosh(x/§) + a_sinh(x/§), |x| <d/2, (3.36)

with the parameters
ei9L(=d/2) L ,ivr(d/2)
ed/26 L p—d/2k

(3.37)

o4 = /Ny
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The superfluid current is uniform across the circuit. Along the insulator
s . .
J = m—Re(—W&lhaxlﬁGI) = Jesin[pr(d/2) — @1(=d/2)], (3.38)

it is proportional to the Josephson junction’s critical current

. qsh ng ~0
m;& sinh(d/§) ~

Currents above this value cannot be captured by the exponential solution, but instead
correspond to plane waves with E > Uj.

The previous derivation has shown us that small values of the current have a
nonlinear relation with the gauge-invariant phase jump d¢ = @r — ¢ across the
junction:

(3.39)

c =

I = I, sin(8¢). (3.40)

As clearly explained by Orlando (1991), the first Josephson relation still holds in
presence of magnetic and electric fields, provided we still work with the gauge-
invariant phase.

Assume now that we establish a voltage difference V among the junction’s
leads. Since we work with metals, the voltage will be approximately uniform
along each lead. We then expect a flux difference on both sides of the insulator
dp(t) = ¢p(d)2) — p(—d/2) =~ fot V(7)dr. Using the connection between flux and
phase (3.22), we obtain the second Josephson relation:

_ 2mdV
N (O dt’

The Josephson relations combine into an equation connecting flux and current:

8¢ (3.41)

I = 1I.si (2—n§) (3.42)
= I.sin g o). .

The dc Josephson effect is a consequence of this equation: a constant voltage bias V
induces an oscillating current due to the linearly growing flux:

(27
I(t) = I.sin (—Vt + (SgD(O)) . (3.43)
Dy

However, (3.42) has more general implications, as a constituent equation, allow-
ing us to include Josephson junctions in the general theory of superconducting
circuits from Chapter 4. For instance, we can derive the inductive energy stored
in the junction as we switch on the voltage — and the flux — to a finite value:

E:/I@WML (3.44)
0
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With the change of variables V (¢)dt = d¢, we can substitute the expression (3.42)
and integrate between the initial and final value of the flux

E / L sin( ) dp = — <20 s (Fso (3.45)
= .sin | — =— cos [ — ) )
0 00 2 D,

From the point of view of superconducting circuit theory, the junction behaves as
a nonlinear inductive element. The inductance may be derived from the current—
voltage relation or from an expansion of the inductive energy just derived. In both
cases, we obtain a similar expression:

V. D 1

LV _ % , 3.46
I ‘é_f 27 1. cos(2mdp/ Dy) (340

This nonlinear inductance and the constituent equation (3.42) will be repeat-
edly used in Chapter 4 when studying superconducting qubits, dc-SQUIDs, and
rf-SQUIDs.
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